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IID-Net: Image Inpainting Detection Network via
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Abstract— Deep learning (DL) has demonstrated its powerful
capabilities in the field of image inpainting, which could pro-
duce visually plausible results. Meanwhile, the malicious use of
advanced image inpainting tools (e.g. removing key objects to
report fake news, erasing visible copyright watermarks, etc.)
has led to increasing threats to the reliability of image data.
To fight against the inpainting forgeries (not only DL-based but
also traditional ones), in this work, we propose a novel end-
to-end Image Inpainting Detection Network (IID-Net), to detect
the inpainted regions at pixel accuracy. The proposed IID-Net
consists of three sub-blocks: the enhancement block, the extrac-
tion block and the decision block. Specifically, the enhance-
ment block aims to enhance the inpainting traces by using
hierarchically combined special layers. The extraction block,
automatically designed by Neural Architecture Search (NAS)
algorithm, is targeted to extract features for the actual inpainting
detection tasks. To further optimize the extracted latent features,
we integrate global and local attention modules in the decision
block, where the global attention reduces the intra-class dif-
ferences by measuring the similarity of global features, while
the local attention strengthens the consistency of local features.
Furthermore, we thoroughly study the generalizability of our
IID-Net, and find that different training data could result in
vastly different generalization capability. By carefully examining
10 popular inpainting methods, we identify that the IID-Net
trained on only one specific deep inpainting method exhibits
desirable generalizability; namely, the obtained IID-Net can accu-
rately detect and localize inpainting manipulations for various
unseen inpainting methods as well. Extensive experimental results
are presented to validate the superiority of the proposed IID-Net,
compared with the state-of-the-art competitors. Our results
would suggest that common artifacts are shared across diverse
image inpainting methods. Finally, we build a public inpainting
dataset of 10K image pairs for future research in this area.

Index Terms— Inpainting forensics, generalizability, deep
neural networks.
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I. INTRODUCTION

IMAGE inpainting is to fill the missing region of an
image with plausible contents. It has a wide range of

applications in the field of image processing and computer
vision, e.g., repairing damaged photos and removing unwanted
objects. Nevertheless, image inpainting techniques might also
be exploited maliciously to alter and delete contents, making
them powerful tools for creating forged images. The trust
issues and security concerns regarding the malicious use of
image inpainting techniques have been attracting increasing
attention in recent years; for instance, using inpainted images
in court as evidence, removing key objects to report fake
news, erasing visible copyright watermarks, just to name a
few. The situation becomes even worse when the deep learning
(DL)-based inpainting methods have become prevalent.
As shown in Fig. 1 (a)-(b), a malicious attacker can very easily
change the facial content or erase the key objects/watermarks
by using the latest DL-based inpainting methods through their
online website 1 or open resources. Therefore, it is imperative
to study how to accurately detect and locate the inpainted
regions for fighting against the inpainting forgeries.

The detection and localization of processed regions have
always been a hot research topic in the field of informa-
tion forensics. Many methods were proposed to detect the
forged regions through their specific artifacts, e.g., compres-
sion artifacts [4], noise pattern [5], color consistencies [6],
EXIF consistencies [7], and copy-move traces [8]. However,
few researches have been done on the detection of inpainting
manipulations, especially the latest DL-based ones. As men-
tioned in [9], the inpainting manipulations are more sophisti-
cated and complex than some other forgeries (e.g., copy-move
forgery) because the inpainting operations could produce
non-continuous contents. Furthermore, DL-based inpainting
schemes are capable of creating completely novel semantic
contents, which impose great challenges for the detection task.
The pioneering study on deep inpainting detection was con-
ducted by Li and Huang [10], showing that it is feasible to train
a deep model for detecting specific deep inpainting artifacts
if the inpainting scheme is known. However, with the rapid
progress of DL-based inpainting, it is very challenging to know
the employed inpainting scheme for a given image; sometimes
more than one inpainting schemes could be adopted to edit one
single image. It is therefore very desirable if we can find a gen-
eralizable forensic approach for detecting various inpainting

1https://www.nvidia.com/research/inpainting/
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Fig. 1. (a) The original images; (b) The forged images where the key
objects/watermarks are removed/replaced by the DL-based inpainting meth-
ods [1]–[3] respectively; and (c) The output of IID-Net by using (b) as input.

manipulations, not only traditional inpainting schemes but also
DL-based ones. This problem, though challenging, seems to
be viable because nowadays convolutional neural networks
usually produce common artifacts when generating images,
as discovered in [11].

In this work, we tackle the challenge of providing a
forensic solution that can generalize well to accurately detect
various unseen inpainting manipulations. More specifically,
we propose a novel end-to-end Image Inpainting Detection
Network (IID-Net), to detect the inpainted regions at pixel
accuracy. The proposed IID-Net consists of three sub-blocks:
the enhancement block, the extraction block and the decision
block. The enhancement block aims to enhance the inpainting
traces by using hierarchically combined special layers. The
extraction block, automatically designed by Neural Architec-
ture Search (NAS) algorithm, is targeted to extract features
for the actual inpainting detection tasks. In order to further
optimize the extracted latent features, we integrate global and
local attention modules in the decision block, where the global
attention reduces the intra-class differences by measuring
the similarity of global features, while the local attention
strengthens the consistency of local features. Furthermore,
we thoroughly study the generalizability of our IID-Net,
and find that different training data could result in vastly
different generalization capability. By carefully examining
10 popular inpainting methods, we identify that the IID-Net
trained on one specific deep inpainting method exhibits desir-
able generalizability, namely, the obtained IID-Net can accu-
rately detect and localize inpainting manipulations for unseen
(not only DL-based but also traditional) inpainting methods as
well. Extensive experimental results are presented to validate
the superiority of the proposed IID-Net, compared with the
state-of-the-art competitors. Our results would suggest that
common artifacts are shared across diverse image inpaint-
ing methods. Finally, we build a public inpainting dataset

of 10K image pairs for future research in this area. An example
of the detection result of IID-Net is shown in Fig. 1 (c), which
is the direct output of our model without any post-processing
by using Fig. 1 (b) as input. Here we would like to emphasize
that none of the original images in Fig. 1 (a) or the corre-
sponding inpainting methods [1]–[3] were involved during the
training of IID-Net.

Our major contributions can be summarized as follows:
• We propose the IID-Net, a novel end-to-end network for

the image inpainting detection, where the NAS algorithm
is used for designing appropriate network architecture
and newly proposed attention modules are incorporated
to further optimize latent features.

• We construct a diverse-inpainting test dataset with 10K
images, based on 10 different inpainting methods, each
contributing 1000 images. Among them, six (GC [12],
CA [13], SH [14], EC [2], LB [3] and RN [15]) are
DL-based, and the remaining (TE [16], NS [17], PM [18],
and SG [19]) are traditional ones. This could serve as a
publicly accessible dataset for standardized comparisons
of inpainting detection approaches.

• Our IID-Net achieves much better detection performance
in comparison with several state-of-the-art methods [10],
[20], [21] over the diverse-inpainting dataset.

• We show that the forensic model trained on a specific
deep inpainting method exhibits excellent generalizable
detection capability to other inpainting methods, no mat-
ter DL-based or traditional ones. This validates that
common detectable traces are left by various inpainting
manipulations.

The rest of this paper is organized as follows. Section II
reviews the related works on inpainting methods, inpainting
forensics, as well as NAS. Section III presents our proposed
IID-Net. Experimental results are given in Section IV and
Section V concludes.

II. RELATED WORKS

A. Inpainting Methods

Image inpainting provides a means for the reconstruction
of missing regions, and has been studied for decades
(see [16]–[19], [22]–[28] and references therein).
Bertalmio et al. [17] introduced an approach that uses
ideas from classical fluid dynamics to propagate isophote
lines continuously from the exterior into the missing regions.
Based on the fast matching method for level set applications,
Telea [16] proposed a simple and fast inpainting algorithm by
propagating an image smoothness estimator along the image
gradient. More recently, Huang et al. [19] showed that image
inpainting can be substantially improved by automatically
guiding the low-level synthesis algorithm using mid-level
structural analysis of the known region. Herling and Broll [18]
presented a combined pixel-based approach that not only
allows for even faster inpainting, but also improves the
overall image quality significantly. However, as these texture
synthesis based inpainting methods essentially assumed that
the missing region shares the same structural features with
the known one, they cannot create novel contents for the
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challenging cases where the missing region involves complex
structures (e.g., faces) and high-level semantics [10], [13].

To address these limitations, many DL models have been
proposed for image inpainting in recent years. By utiliz-
ing large-scale datasets to learn semantic representations of
images, DL-based inpainting methods are able to generate
completely novel contents and achieve the state-of-the-art
inpainting performance. Pathak et al. [29] pioneered the
research in this direction by training deep generative adver-
sarial networks for inpainting large holes in images. How-
ever, the proposed networks cannot satisfactorily maintain
global consistency and tend to produce severe visual artifacts.
Iizuka et al. [30] designed a generative network with two
context discriminators to encourage global and local con-
sistency. Instead of merely using the features of latent lay-
ers, some works [13], [14] introduced attention mechanism,
which jointly uses the existing features to estimate the miss-
ing features. To further improve the attention mechanism,
Wang et al. [31] suggested a multi-stage image contextual
attention learning strategy to deal with the rich background
information flexibly while avoiding abuse them. Meanwhile,
several works [1], [12] adopted partial or gated convolutions
to reduce the color discrepancy and blurriness, where the
convolutions are masked, renormalized, and operated only on
the known region. With the recent trend of using two-stage
networks, Nazeri et al. [2] and Wu et al. [3] respectively
proposed to use edge/LBP generator at the first stage, followed
by a second image completion network to further improve
the inpainting performance. Besides, the inpainting techniques
can be utilized for facilitating the occluded face recognition
systems [32], [33]. In particular, Ge et al. [32] proposed the
inpainting based identify-diversity GAN to improve the capac-
ity of well-trained face recognizers on identifying occluded
faces. Li et al. [33] designed an inpainting guided de-occlusion
distillation framework for efficient masked face recognition.

B. Inpainting Forensics

As the other side of the coin, many inpainting forensic
methods [9], [34]–[45] have been proposed to fight against
the malicious usage of inpainting manipulations. One common
principle of these methods is to search similar blocks within a
given image, where the blocks with high matching degrees are
suspected to be forged. Specifically, Wu et al. [34] proposed a
blind detection method based on zero-connectivity feature and
fuzzy membership. Lin et al. [35] leveraged quantization table
estimation to measure the inconsistency among images for
detecting forged images. Further, Liang et al. [39] presented an
efficient forgery detection algorithm which integrates central
pixel mapping, greatest zero-connectivity component labeling
and fragment splicing detection. More recently, Zhu et al. [43]
built an encoder-decoder network that is supervised by a label
matrix and weighted cross-entropy to capture the manipu-
lation traces. Unfortunately, these forensic approaches can
only detect exemplar-based inpainting manipulations, while
not diffusion-based ones, as the latter type will not generate
similar blocks in the inpainted regions [20]. To remedy
this issue, Li et al. [20] suggested detecting diffusion-based
inpainting by analyzing the local variance of image Laplacian

along the isophote direction. In addition, to detect complicated
combinations of forgeries (including inpainting), Wu et al. [21]
proposed MT-Net, a more general forgery localization net-
work, which first extracts image manipulation trace features
and then identifies anomalous regions by assessing how differ-
ent a local feature is from its reference features. However, for
some challenging cases, e.g., when forged features dominate
the image, MT-Net could fail completely.

Since DL-based inpainting methods can use learned
high-level semantic information to generate more complex
structures and even novel objects, they may leave com-
pletely different artifacts in the inpainted regions, causing very
poor detection performance of the aforementioned forensic
approaches [10], [46]. To improve the detection accuracy,
Li and Huang [10] designed the HP-FCN, a DL-based method
to locate the image regions manipulated by deep inpainting.
A high-pass pre-filtering module is employed to suppress
image contents and enhance the differences between the
inpainted and untouched regions. Their experimental results
showed that HP-FCN can effectively locate the inpainting forg-
eries when the training set created from the same inpainting
method is available. It should be noted that the generalizability
to unseen inpainting methods, though important in practice,
has not been investigated in [10].

C. Neural Architecture Search (NAS)

The achievements of deep neural networks in various
tasks depending on their exquisite architecture design, which
requires a tremendous amount of domain knowledge and
is usually time-consuming. Zoph and Le [47] introduced
the NAS, an idea of using recurrent neural networks to
search for an appropriate network architecture with the highest
validation accuracy. Along this line, many works proposed
to adopt advanced techniques to aid the search process, e.g.,
reinforcement learning [48], [49], evolution [50] and surrogate
model [51]. However, searching and training thousands of
models are almost infeasible for a single practitioner [52].
To significantly reduce the computational cost of the architec-
ture search, the weight sharing mechanism [53] and one-shot
NAS [52] were utilized. In this work, we adopt the one-shot
NAS strategy as the backend search algorithm, due to its
speediness and flexibility [54].

The core idea of the one-shot NAS is to use the same
weights to evaluate different sampled architectures, thereby
achieving the cost reduction of an order of magnitude. Specif-
ically, instead of training several separate models, we can train
a single model (the one-shot model) containing all the potential
operations. Then at the evaluation stage, some operations’
outputs are selectively zeroed out, in order to determine
which operation contributes most to the prediction accuracy.
It should be noted that the one-shot models are only used
to rank different architectures in the search space; retraining
the candidate model with the highest evaluation accuracy is
still needed. For more details regarding the one-shot NAS,
please refer to [52].

III. IID-NET

In this section, we present the details of the IID-Net for
detecting the inpainting manipulations, not only for DL-based
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Fig. 2. The overview of our proposed IID-Net. The upper part shows how to generate images for training, while for inference, by directly using an image X
as input, the detection result Mo can be obtained. Conv( f, k, s) means a convolution with f filters, kernel size k and stride s (similar for the remaining
numbers in other layers). More details are given in Section III.

but also for traditional ones. The schematic diagram of the
IID-Net is shown in Fig. 2. As can be seen, the IID-Net
consists of three main blocks, namely, the enhancement block,
the extraction block and the decision block. The enhance-
ment block involves hierarchically combined input layers
for enhancing the inpainting traces (see Section III-A). The
following extraction block, composed of a series of cell units
searched by one-shot NAS, is designed to extract high-level
features that are suitable for distinguishing multiple forgeries
(see Section III-B). Eventually, the decision block outputs the
final detection result, with the assistance of global and local
attention modules (see Section III-C).

At the training stage, we first sample a pristine 3-channel
(RGB) color image P ∈ R

H×W×3 and a corresponding binary
mask Mg ∈ {0, 1}H×W×1 (1’s are assigned to the inpainted
regions and 0’s elsewhere). Then an input image X can be
synthesized as

X = P � (1 − Mg) + y(P � (1 − Mg)) � Mg, (1)

where the operator � means element-wise multiplication and
the function y(·) : R

H×W×3 → R
H×W×3 denotes the

employed inpainting algorithm. The IID-Net G : R
H×W×3 →

R
H×W×1 takes X as input, and outputs the predicted mask Mo.

Here, each element of Mo is a grayscale value in (0, 1), as we
use the Sigmoid activation. A threshold (e.g., 0.5) could be
employed to further binarize the output. During this process,
the pair of (Mg, Mo) are used by a fused loss function L to
update the parameters of the network G. At the inference stage,
similar procedure can be performed to obtain the predicted
inpainting mask.

Here we would like to emphasize that the inpainted regions
indicated by the binary mask Mg can be of any shape and
appear anywhere, which better reflects the true situation of
forgery operations. The masks are selected from a dataset
generated by [1], where some examples are given in Fig. 3.
Compared with the HP-FCN [10] which only uses rectangular
masks within a fixed range, our training preparation allows
the network to learn more about the diversity of the inpainting
forgery, leading to better detection accuracy.

Now we are ready to explain the aforementioned three
main blocks in the IID-Net, and also the loss function for
its optimization.

Fig. 3. Mask examples from [1], usually having < 50% holes.

A. Enhancement Block

Normally, the standard convolutional layer learns the fea-
tures for representing the contents of input images, as opposed
to learning the traces left by modifications [55]. Besides,
as some traces are hidden in local noise distributions, RGB
channels are not sufficient to tackle all the different cases
of manipulations [56]. Therefore, we propose to suppress the
contents of input images and enhance the inpainting traces
by adding several pre-designed input layers. The potential
input layers that can be incorporated include Steganalysis Rich
Model (SRM) layer [56], Pre-Filtering (PF) layer [10], Bayar
layer [55], convolution (Conv), and combinations of them.

More specifically, SRM layer utilizes the local noise distri-
butions of the image to provide additional evidence [57]. For
a 3-channel input X, SRM layer extracts the corresponding
features �s by using a 5 × 5 × 3 kernel Ws , namely,

�s(X) = Ws ⊗ X, (2)

where

Ws = 1

4

[ 0 0 0 0 0
0 −1 2 −1 0
0 2 −4 2 0
0 −1 2 −1 0
0 0 0 0 0

]
;

× 1

12

⎡
⎣ −1 2 −2 2 −1

2 −6 8 −6 2
−2 8 −12 8 −2
2 −6 8 −6 2

−1 2 −2 2 −1

⎤
⎦ ;

× 1

2

[ 0 0 0 0 0
0 0 0 0 0
0 1 −2 1 0
0 0 0 0 0
0 0 0 0 0

]
, (3)

and ⊗ represents the convolutional operation.
PF layer is designed to get filtered residuals for enhancing

inpainting traces, as the inpainted regions are more distin-
guishable from the pristine ones in the residual domain [10].
It is also found in [10] that the transition probability matri-
ces (TPM) for pristine and inpainted patches in the pixel
domain (without filtering) are very similar, while the TPM in
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the residual domain (with filtering) exhibit notable differ-
ences. This is mainly because the inpainted patches contain
fewer high-frequency components, as the inpainting methods
usually focus on producing visually realistic image contents,
while ignoring the high-frequency noises inherently existing
in the natural images. Thereby a high-pass filter (i.e. the
PF layer) can be utilized to extract the features in the
high-frequency domain for the subsequent forensic analysis.
Practically, PF layer can be initialized with a 3 × 3 × 3
first-order derivative high-pass filter Wp:

Wp =
⎡
⎣0 0 0

0 −1 0
0 1 0

⎤
⎦ ;

⎡
⎣0 0 0

0 −1 1
0 0 0

⎤
⎦ ;

⎡
⎣0 0 0

0 −1 0
0 0 1

⎤
⎦ , (4)

The high-passed features �p can then be obtained by

�p(X) = Wp ⊗ X. (5)

It should be noted that the filter kernels of PF layer are set as
learnable so that they can be fine-tuned during the learning.

Instead of relying on pre-determined kernels, we also
incorporate the Bayar layer to adaptively learn low-level
prediction residual features for detecting inpainting traces. It is
implemented by adding specific constraints to the standard
convolutional kernels. For simplicity, we use Wi

b to represent
the i th (i = 1, 2, 3) channel of the weights Wb in the Bayar
layer, and the central values of each channel Wi

b are denoted
by a spatial index (0, 0). Then the following constraints are
enforced on each channel of Wb before each training iteration:⎧⎪⎨

⎪⎩
Wi

b(0, 0) = −1∑
m,n �=0

Wi
b(m, n) = 1 for i = 1, 2, 3. (6)

Finally, the constrained features �b can be obtained by

�b(X) = Wb ⊗ X. (7)

To find an appropriate combination of these layers, we have
conducted intensive experiments by evaluating the inpaint-
ing detection performance of various combinations. We have
found that the combination of Conv+Bayar+PF gives the
best detection performance. We thus use this kind of com-
bination as our first layer in the enhancement block. Next,
we concatenate the enhanced features in the channel dimension
and use two standard convolutions to initially process the
enhanced features (i.e., decrease in resolutions and increase
in the number of channels) in preparation for the subsequent
high-level features extraction. The experimental justifications
of such combination will be provided in Section IV-D.

B. Extraction Block

After the enhancement block, we also design the extraction
block to extract the high-level features for the inpainting
detection. Instead of adopting the commonly-used ResNet [58]
or DnCNN [59] as a backbone, we propose to use an adjustable
cell and fine-tune it with the one-shot NAS, so as to better fit
the requirement of the inpainting detection. In the following,
we successively introduce the cell architecture, i.e., search
space, and the search algorithm.

Fig. 4. Diagram of the cell unit used in our extraction block. Solid lines
indicate fixed components while dashed lines represent selective components.
f is the number of filters and s represents stride step.

1) Search Space: One of the core components of NAS is
how to design a reasonable search space for the adjustable
cell, as different architectures could lead to diversified results.
To describe the search space symbolically, we adopt the
notational convention that each cell is represented as a directed
acyclic graph G = (V, E) with N nodes. Each node V(i)

indicates the i th latent feature �(i)(X) when using X as the
input, and each edge E(i, j ) means a transformed operation
o(i, j )(·) chosen from a pre-defined operation pool

O = {ok(·), k = 1, · · · , n}, (8)

which includes n candidate operations. For conveniently rep-
resenting the selective edges in the search space, control
parameters � are introduced:

� = {λ(i, j )|λ(i, j ) ∈ {0, 1}, i, j = 1, · · · , N}, (9)

where 1 means the corresponding edge E(i, j ) is activated and
0 otherwise. Each latent feature in the graph can be calculated
by using its predecessors, i.e.,

�( j )(X) = λ(i, j )o(i, j )(�(i)(X)). (10)

Compared with the traditional NAS, our search space is
tailored to the inpainting detection and is mainly different in
two aspects: 1) Selective operations in the pool O are pruned,
remaining only three kinds of separable convolutions and
identity transformation. This can reduce the computational cost
while preserving the diversity of sampling models [54], [60],
and 2) We limit the minimum number of transformations in the
cell block, i.e., some edges are manually fixed. In particular,
the cell is composed of 3×3 and 1×1 separable convolutions,
where batch normalization (BN) [61] and ReLU [62] activation
are embedded appropriately. A skip connection is introduced
from beginning to end as a shortcut. As these operations
have been proven to be very effective in helping the network
learn feature representations [21], they are explicitly added to
enhance the initial performance of the cell block. As for the
remaining selective edges, we package them as choice blocks.
The diagram of the cell architecture is shown in Fig. 4.

2) Search Algorithm: Similar to [47], [53], [54], we search
the network architectures based on the one-shot NAS algo-
rithm. Specifically, we first train a supernet containing all
possible network architectures by enabling all selective edges
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in each choice block. Once the supernet is well-trained, we can
sample a candidate architecture by simulating that each choice
block contains only one kind of selective edge, and zeroing
out the remaining ones. Recall that we have 3 choice blocks
with 4 operations in the O, and totally 10 cells in the network,
which results in a search space with the complexity 43×10 ≈
1018. Although the search space is huge, it is still possible
to efficiently identify promising architectures from it. As the
architectures are sampled independently from a fixed probabil-
ity distribution [52], we can simulate the distribution through
sampling a number of candidate architectures. To achieve a
good tradeoff between the complexity and the effectiveness,
we randomly screen 1000 architectures from �; a somewhat
similar strategy was also adopted in [54]. These candidate
architectures are then evaluated on a validation set mixed
with multiple inpainting forgeries. Specifically, the validation
set contains 5000 images generated by 5 randomly selected
inpainting methods (details on inpainting methods are deferred
to Section IV). This validation set naturally inherits the com-
monality of different inpainting methods, making the resulting
architectures suitable for the inpainting detection task. The
best-performing one among these candidates is chosen as
the final architecture. Noted that the candidate architectures
generally perform unsatisfactorily, as they have been trained
with few steps; further fine-tuning is needed.

C. Decision Block

The role of the decision block is to transform the learned
high-level features into low-level discriminative information,
i.e., inpainting detection results. Apparently, at the pixel level,
the detection results can be divided into two classes: positive
class (inpainted pixel) and negative class (pristine pixel).
During this process, misclassified pixels may be generated
to form inaccurate detection, due to the ineffectiveness of
convolutional neural networks in modeling long-term feature
correlations [13]. To track this problem, many attention mod-
ules have been proposed and used recently in the decision
phase of networks [3], [13], [14]. The main idea of the
attention modules is simple but very efficient, which is to
optimize specific features with the assistance of other fea-
tures. Along this line, we propose to integrate novel attention
modules (i.e., global attention and local attention) into the
decision block for better generating the detection results. The
global attention aims to reduce the number of misclassified
pixels through a very effective technique in the classification
task: minimizing the intra-class variance. Motivated by the
observations that generally surrounding pixels are of the same
class as the center pixel, we use local attention to improve the
consistency of features within a specific region for generating
more accurate detection results. The procedure of the global
and local attentions is shown in Fig. 5, and the details are
given below. For a more intuitive understanding, the feature
maps before and after passing through the attention modules
are visualized in Fig. 6. It can be seen that the attentions
do help the model optimize the feature maps, so as to make
the classification task easier. The rest of the decision block is
mainly composed of three transposed convolutions (ConvT),

Fig. 5. Illustration of the global attention and local attention.

Fig. 6. Visualization of the feature maps output by the proposed global
and local attention modules. (a) Input; (b) ground-truth inpainting mask;
(c) feature map before passing any attention modules; (d) feature map after
passing the global attention module; and (e) feature map after passing the
local attention module.

where the BN [61], ReLU [62], and Sigmoid activation are
embedded appropriately.

1) Gloabl Attention: The global attention is motivated by
an essence method for improving classification performance:
reducing intra-group distances. Practically, we re-generate
each feature with its several most similar features, so as to
reduce the differences within the same class. Let �(X) be
the feature map of the latent layer in the decision block when
using X as the input. We extract all 1×1 patches {P j }K

j=1 from
�(X) and group them into a set P . For each patch P j ∈ P ,
its intra-cosine similarities within P can be computed as

Sj,k =
〈 P j

||P j || ,
Pk

||Pk ||
〉
, Pk ∈ P . (11)

Upon computing all Sj,k’s, we can set a similarity threshold τ
to select the top-T most similar patches for P j from P . Let
N = {n1, . . . , nT } record all the indexes of these top-T most
similar patches. Then we have

N =
{

k|Sj,k ≥ τ
}
. (12)

In practice, the process of similarity search can be conducted
via a modified convolutional layer to reduce the computation
burden caused by loop operations, as explained in [3], [14].
We then propose to update each P j ∈ P via the average of its
corresponding top-T most similar patches:

P∗
j = 1

T

∑
k∈N

Pk . (13)
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Fig. 7. The relationship (a) between τ and the probability that the selected
patches are in the same class; and (b) between τ and T .

Therefore, the updated P∗
j will increase the intra-class similar-

ity along with the training processes, benefiting the ultimate
inpainting detection task.

However, there are two potential problems when applying
this global attention mechanism: 1) how to make sure that
the top-T most similar patches belong to the same class;
and 2) how to set an appropriate value for the parameter T
(or equivalently the threshold τ ), since the proportion of the
inpainted and untouched regions could be varying. To answer
these two questions, we take a data-driven approach by ana-
lyzing the statistics of 1000 images that are randomly selected
from the training dataset. In Fig. 7 (a), we plot the relationship
between the employed threshold τ and the probability that
the corresponding selected top-T patches belong to the same
class. As can be seen, with the increasing τ , the probability
of belonging to the same class tends to increase as well.
Meanwhile, in Fig. 7 (b), we also show how the value T varies
with respect to the threshold τ . It can be observed that when
τ is relatively significant, increasing τ leads to a decrease
of T . In other words, when τ is very large, then the number
of selected similar patches would be very small. Therefore,
it is crucial to set the threshold τ appropriately by balancing
two factors: 1) the probability of belonging to the same
class should be high enough, and 2) the number of selected
patches T should be sufficiently large as well. According to
the above experiments, we empirically set τ = 0.5, which
corresponds to the case that the probability of belonging to
the same class is around 0.9 and T = 5.3.

2) Local Attention: Inspired by the observation that adjacent
pixels (features) are often highly correlated, we now propose a
local attention module to better maintain the local consistency.
Similar to the process of the global attention, we update each
feature with its surrounding features in a weighted manner.
To reflect the local correlation, the surrounding features in a
small local window are exploited. Specifically, we define a
weight matrix Wl of size m × m, where m = 5, and convolve
it with the patch P j to obtain the updated feature P∗

j . Namely,

P∗
j = Wl ⊗ P j . (14)

To determine an appropriate weight matrix Wl for the gen-
eralizable inpainting detection, we again adopt a data-driven
approach by exploiting the 1000 training images used in the
global attention. We calculate the average similarity matrix S̄

of size m × m over these 1000 images,2 and have

S̄ =

⎡
⎢⎢⎢⎢⎣

.314 .351 .419 .345 .308

.337 .408 .525 .403 .334

.385 .479 1 .478 .384

.366 .404 .525 .407 .336

.312 .347 .421 .352 .315

⎤
⎥⎥⎥⎥⎦ . (15)

where each element is computed according to (11). Upon
having the similarity matrix S̄, the weight matrix Wl can
be naturally determined by transforming S̄ via a softmax
activation [63]:

Wl = exp(S̄)∑
exp(S̄)

=

⎡
⎢⎢⎢⎢⎣

.0360 .0374 .0400 .0371 .0358

.0368 .0395 .0445 .0393 .0367

.0386 .0424 .0715 .0424 .0386

.0368 .0394 .0444 .0395 .0368

.0359 .0372 .0400 .0374 .0360

⎤
⎥⎥⎥⎥⎦ . (16)

D. Fused Loss Function

We use the binary cross-entropy (BCE) loss to supervise
the training of IID-Net, as its objective is to detect the
inpainted/pristine region, which is essentially a binary clas-
sification task. More specifically, for a pair of ground-truth
and predicted inpainting masks (Mg, Mo), the BCE loss can
be defined as

LB(Mg, Mo) = − 1

H W

H∑
i=1

W∑
j=1

(
Mg(i, j) log Mo(i, j)

+ (1 − Mg(i, j)) log(1 − Mo(i, j))
)
, (17)

where Mg(i, j) (similarly for Mo(i, j)) denotes the (i, j)th
element of Mg with a resolution H × W .

However, in most of the inpainting-based forgeries,
the inpainted regions are relatively smaller than the pristine
ones, resulting in a class imbalance problem caused by the
above loss function. Such imbalance would lead to a serious
problem that the trained model tends to more likely classify
the samples as pristine. To address this issue, we propose to
incorporate the focal loss [64] into the BCE loss, forming
a fused loss function. The idea of the focal loss is to add
a modulating term to the standard cross entropy loss, so as
to focus learning on hard examples and down-weight the
numerous easy negatives. Typically, an α-balanced variant of
the focal loss can be defined as:
LF (Mg, Mo)

= − 1

H W

H∑
i=1

W∑
j=1

(
α(1 − Mo(i, j))γ Mg(i, j) log Mo(i, j)

+ (1 − α)(Mo(i, j))γ (1 − Mg(i, j)) log(1 − Mo(i, j))
)
.

(18)

In particular, γ is a focusing parameter that can smoothly
adjust the rate at which easy examples are down-weighted.

2We also have tried other settings of m, e.g., m = 3 and 7. Experimental
results show that the setting of m = 5 gives slightly better results.
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Clearly, when γ = 0, the focal loss is equivalent to the
cross-entropy loss, and as γ becomes larger, the effect of the
modulating factor is likewise increased. We evaluate different
choices of γ ∈ {1, 2, 3}, and empirically find that γ = 2 works
best in the experiments. Also, α is the weight assigned to the
rare class for further adjusting the imbalance classes. Recall
that the proportion of the inpainting regions (positive class)
in each image is roughly between 0 ∼ 50%. We hence set
α = 0.75 to balance the rare class. In fact, we also test other
settings of α ∈ {0.65, 0.85}, and observe similar performance.

Thus, the fused loss function can be written as

L(Mg, Mo) = LB(Mg, Mo) + LF (Mg, Mo). (19)

Instead of directly using the above fused loss function as
the objective for optimizing IID-Net, we propose to apply a
median filter to Mo before calculating the loss functions (17)
and (18). Median filter is a non-linear statistical filter, often
used to remove impulse noises. The intuition behind applying
median filter to Mo is that we hardly tamper with only one
or two isolated pixels in reality; namely, the inpainting area
is usually continuous within a certain area. Hence, median
filtering is a natural choice for “denoising” the isolated regions,
which could boost the inpainting detection performance.
Finally, the total loss function of IID-Net can be expressed as:
L(Mg, Mo)=LB(Mg, F ⊗ Mo)+LF (Mg, F ⊗ Mo), (20)

where F is a standard 3 × 3 median filter kernel.

IV. TRAINING DATA SELECTION AND

EXPERIMENTAL RESULTS

The proposed IID-Net is implemented using the PyTorch
framework. The training is performed on a desktop equipped
with an Intel(R) Xeon(R) Gold 6130 CPU and three GTX
2080 GPUs. Adam [65] with default parameters is adopted
as the optimizer. We set the batch size to 24 and have
2000 batches per epoch. The Area Under the receiver operating
characteristic Curve (AUC, in the percentage format, if not
otherwise stated) in the pixel domain, and the F1 score
are used as the evaluation criteria. We train the network
in an end-to-end manner with an initial learning rate 1e-4.
The learning rate will be halved if the loss L fails to decrease
for 10 epochs until the convergence. All the images used
in the training phase are cropped to a size of 256 × 256,
while there is no size limit for the inference phase. The
average inference time of our model is 0.1724 seconds
for a 256 × 256 RGB image. To embrace the concept of
reproducible research, the code of our paper is available at
https://github.com/HighwayWu/InpaintingForensics.

A. Training Data Selection and Generalizability Evaluation

The training data selection is crucial to the success of
the IID-Net, especially for the generalizability to unseen
inpainting approaches. For the generation of training data,
Places [66] (JPEG lossy compression) and Dresden [67]
(NEF lossless compression) datasets are used as base
images P, and the masks Mg are randomly sampled from [1].
The training dataset contains a total of 48K images (around

Fig. 8. Inpainting detection performance of IID-Net. Each column shows
the test results (AUC values) of the 10 models trained with different training
datasets, and evaluated on the same test dataset resulting from one particular
inpainting method.

3 Gigabyte), half of which are randomly sampled from
Places and the remaining half are randomly selected from
Dresden. It should be noted that we keep the inpainting
method y(·) unchanged when generating the training dataset,
and regenerate the entire training dataset if y(·) is changed.
In other words, we only use the training dataset generated
by one inpainting method at a time in the actual training
process. As for test images, we further introduce additional
datasets, CelebA [68] and ImageNet [69], to increase the
data diversity. Besides, we randomly generate a series of
basic shapes, e.g., rectangles, circles, ellipses, and polylines,
as additional test masks, which can locate at any position.
These additional masks occupy approximately the same pro-
portions as the masks generated from [1]. Regarding the
inpainting methods, we here consider totally 10 representative
ones, among which 6 are DL-based ones proposed in recent
years, namely, GC [12], CA [13], SH [14], EC [2], LB [3]
and RN [15]. The remaining 4 methods are traditional (non
DL-based), which include TE [16], NS [17], PM [18], and
SG [19]. Though TE and NS were published before 2005,
they have been included into the OpenCV extension package
as the built-in default inpainting methods. This implies that
these two methods are widely used, and the results based
on them would be very meaningful. A brief introduction
of these inpainting methods has already been presented in
Section II-A. Specifically, we build up a test dataset of 10K
pairs of inpainted images and the corresponding ground-truth
masks, where a variety of image categories and mask
shapes are incorporated. In addition, each of the 10 afore-
mentioned inpainting methods contributes 1000 inpainted
images. The whole test dataset is downloadable from
https://github.com/HighwayWu/InpaintingForensics, serv-
ing as a useful resource of our research community for fighting
against the inpainting-based forgeries. Here we emphasize that
the training dataset and test dataset have no overlap.

In Fig. 8, we report the inpainting detection performance
of our proposed IID-Net, where the 10K-sized test dataset
is used. More specifically, for each column, we present the
results of 10 models trained with different training datasets
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TABLE I

QUANTITATIVE COMPARISONS BY USING AUC AND F1 AS CRITICS. FOR EACH COLUMN, THE HIGHEST VALUE IS HIGHLIGHTED IN BLACK, AND
GRAY VALUE MEANS THAT THE INPAINTING METHODS USED IN THE TEST DATASET ARE USED IN THE TRAINING, I.E., NOT TESTING

GENERALIZATION. “−” IN “RETRAIN” COLUMN INDICATES THAT THE MODELS ARE OFFICIALLY RELEASED WITHOUT RETRAINING

(including GC, CA, SH,…), where the test set resulting from
one particular inpainting method is fixed. Take the first column
for example. The 10 trained models are evaluated on the same
test dataset prepared by using GC as the inpainting method.
Similarly, for the second column, these 10 trained models are
evaluated on the same test dataset prepared by using CA as
the inpainting method. In other words, the comparison among
these 10 models is still fair enough, as the test dataset in each
column keeps the same. This also implies that there is no
need to enforce the same source images and masks for the
test dataset of different columns.

The diagonal AUC values in Fig.7 represent the detec-
tion results when the inpainting methods at the training and
testing stages are the same, i.e., the scenario where the
utilized inpainting method is known. In such a scenario,
IID-Net achieves very desirable AUC performance (> 95%)
for all cases. Meanwhile, the off-diagonal elements in Fig. 8
demonstrate the generalizability of IID-Net to unknown
inpainting methods. It can be observed that the generalizability
of IID-Net is vastly different when different training data are
utilized. The best generalizability is achieved when GC is
adopted at the training phase, with an average AUC 97.98%.
We conjecture that it may be because GC incorporates multiple
inpainting characteristics, enabling the trained model with
good generalizability. However, the in-depth understanding
needs to be combined with the interpretability of neural net-
works, which is beyond the scope of this paper. In fact, the net-
works trained on DL-based inpainting methods usually have
more favorable generalizability than the ones trained on classic
inpainting methods. It is safe to conclude that the DL-based
and traditional inpainting algorithms leave somewhat common
detectable traces that can be distinguished from untouched
images. As the IID-Net trained with GC achieves the best
generalizability, the training data generated with GC will be
adopted in the following evaluations.

B. Quantitative Comparisons

For the comparison purpose, we adopt three state-of-the-art
inpainting forensic approaches (i.e., LDI [20], MT-Net [21]

and HP-FCN [10]) to detect the aforementioned inpainting
methods, together with a newly proposed traditional inpainting
scheme LR [70]. LDI is a traditional forensic approach that
designs discriminative features for identifying the inpainted
regions and uses post-processing for refining the detection
results. MT-Net uses the powerful learning ability of neural
networks to classify anomalous features of an input image, and
attains good generalizability to various conventional manip-
ulation types, including inpainting operations. HP-FCN is a
high-pass fully convolutional network for locating the forged
regions generated by deep inpainting. For fairness, we compare
our proposed IID-Net not only with the pre-trained models
officially released by competitors, but also with the models
retrained on our training dataset. More specifically, we retrain
the competitors’ models based on their open-source codes, and
strictly follow their training procedures, e.g., using the same
batch size, learning rate, training epochs and strategies.

The quantitative comparisons in terms of the AUC value
and F1 score (higher are better) in the pixel domain are
presented in Table I. As can be observed, the detection
performance of LDI on the traditional inpainting methods
is relatively better than on the DL-based ones. On aver-
age, the AUC value is 49.97%, which is close to random
guessing. This phenomenon is probably due to the fact that
the manually designed features are not reliable, especially
for unseen inpainting approaches. In contrast, the learning-
based detection methods (MT-Net, HP-FCN, and IID-Net)
achieve much better AUC performance. More specifically,
the original MT-Net obtains 91.07% mean AUC value (and
59.07% F1 score), meaning that the pre-trained MT-Net is
already able to (relatively) accurately detect the inpainted
regions created by various inpainting algorithms. Surprisingly,
the retrained MT-Net achieves a bit worse AUC/F1 perfor-
mance (82.79%/30.17%), compared to the pre-trained model.
This may be because the network architecture of MT-Net is
specially designed according to their original training dataset.
Furthermore, the pre-trained HP-FCN performs unsatisfacto-
rily (53.79% in AUC and 0.44% in F1), mainly because this
model is overfitted with a specific inpainting method and
the fixed inpainting mask. The retained HP-FCN performs
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TABLE II

ABLATION STUDIES ON TEST DATASET BY USING AUC AS THE CRITIC

much better, with 94.26% AUC and 51.76% F1. Thanks to
the adopted NAS algorithm for the architecture search and
the global/local attention mechanisms, our proposed IID-Net
leads to very accurate and consistent inpainting detection and
localization, with 98.41% AUC and 87.57% F1.

C. Qualitative Comparisons

In addition to the quantitative comparisons, we also compare
different models qualitatively, as shown in Fig. 9. More specif-
ically, Fig. 9 gives several representative examples of using
inpainting as a powerful tool to remove objects or even change
the semantic meaning of an image. Due to the space limit, only
the best-performing version of each competing model is shown
(i.e., the pre-trained MT-Net and the retrained HP-FCN). It can
be seen that LDI only performs relatively well in detecting the
NS-based inpainting manipulations (the seventh row); but its
detection performance degrades severely for other deep and
traditional inpainting algorithms. For the pre-trained MT-Net,
it can locate the forged regions well in some test datasets;
but cannot achieve a consistent performance across all test
datasets (e.g. see the second, third and fourth rows). The
retrained HP-FCN generally can produce pretty good detection
results; but inaccurate, broken or blurred detection results can
be observed (the fourth, seventh and tenth rows). Besides,
we also compare our model with a state-of-the-art general
deepfake localization method, MAM [71]. As can be observed,
MAM performs poorly for inpainting forensics tasks, which
may be due to the gap between the traces of inpainting and
deepfake. Compared with these models, our proposed IID-Net
can learn more reasonable high-level semantics and generate a
more precise predicted mask, primarily thanks to the carefully
designed architectures as well as attention modules.

D. Ablation Studies

We now conduct the ablation studies of our proposed model
by analyzing how each component (e.g., Bayar/PF layers,
the NAS, and the attention modules) in the blocks contributes
to the final inpainting detection results. To this end, we first
prohibit the use of additional components in each block, and
then evaluate the performance of different retrained models
with appropriate settings. The obtained results are shown
in Table II.

For the enhancement block, the pre-designed input layers
(e.g., SRM [56], PF [10] and Bayar [55] layers) lead to
better performance comparing with the traditional convolution
(Conv). This is mainly because these input layers can enhance
the inpainting traces, providing additional evidence for the
subsequent detection. Among these input layers, SRM layer
gives the worst performance, possibly because it uses fixed
weights and cannot better adapt to generalizable inpainting
traces. In addition, the combination of Conv+Bayar+PF
could offer the best detection performance, and that is the
reason for adopting such a combination as the input layer in
our IID-Net.

For evaluating the performance of NAS, we initialize the
extraction block with three different architectures: an archi-
tecture designed by standard heuristics (i.e., all the choice
block are fixed with 3 × 3 separable convolutions), a random
architecture and the sub-optimal architecture sampled from �
(see (9)), respectively. It is found that the performance
of the randomly sampled architecture is relatively poor
(90.72% AUC), as it is likely to contain inappropriate struc-
tures, such as redundant identity transforms. The heuristic
architecture is barely satisfactory (92.76% AUC), mainly
because the structure is not specifically designed for inpaint-
ing detection. While the sub-optimal architecture sampled
from � by using the NAS strategy performs much better
(96.28% AUC). This implies that NAS can better design net-
work structures, which are crucial for the inpainting detection
task and its generalizability.

For further improving the performance, we embed the
pre-designed attention modules in the decision block.
From Table II, we can also observe that both global and local
attention modules indeed can bring positive improvements.
This is because attention modules can further optimize
high-level features, boosting the eventual inpainting detection
performance.

Finally, instead of directly using the loss function L given
in (19) for optimization, we propose to incorporate median
filtering operations in the loss function, as shown in (20).
We notice from Table II that slight improvements can be
brought by such refined loss function. We can also see that the
focal loss term LF can enhance the performance by adjusting
the imbalance classes.
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Fig. 9. Qualitative comparisons for detection of inpainting forgeries. For each row, the images from left to right are original, forgery (input), ground-truth,
detection result (output) generated by MAM [71], LDI [20], MT-Net [21], HP-FCN [10] and our IID-Net, respectively. The forged images from top to bottom
are inpainted by GC [12], CA [13], SH [14], EC [2], LB [3], RN [15], NS [17], LR [70], PM [18], and SG [19], respectively.

E. Robustness Evaluations
We would also like to evaluate the robustness of our IID-Net

in detecting inpainting manipulations. This is very critical in
real-world detection scenarios, because many post-processing

operations, such as noise addition, resizing, and/or compres-
sion, could be applied to potentially hide the inpainting traces.
To this end, we apply these post-processing operations with
different types and magnitudes to the test datasets and report
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Fig. 10. Robustness evaluation of IID-Net against additive noise, resizing
and compression.

the statistical detection results in Fig. 10. Here, we utilize
a unified parameter p for different cases, e.g., for uniform
and Gaussian noises, p/10 represents the standard deviation,
while 100 − p stands for the QF employed in the JPEG
compression. It is observed that the overall performance is
good when the intensity of perturbations is relatively low, e.g.,
the performance is almost unchanged when performing JPEG
compression with a quality factor of 95. With the increase of
the perturbation intensity, the performance gradually drops.
Such phenomenon agrees with the observations from [11],
[21], [72]. The robustness evaluation results indicate that our
IID-Net exhibits desirable robustness against the perturbations
with small or medium magnitudes. Of course, when the
perturbation intensity becomes further larger, the inpainting
evidence will be destroyed, causing severe detection errors.
But meanwhile, strong perturbations also lead to severely
degraded images, which deviates the purpose of performing
inpainting. Finally, data augmentation at the training phase by
considering various distortions could be a viable solution for
improving the robustness.

F. Challenging Cases

Before ending this section, we further evaluate the perfor-
mance of our proposed IID-Net and other competing schemes
under several challenging cases. One particular challenge
arises when multiple regions in a single image are manipulated
differently, e.g., by different inpainting algorithms. As indi-
cated in [21], MT-Net would fail in such cases. To this end,
we give an example by first inpainting an original image
with a mask via RN [15], and the inpainting result is called
“Forgery 1”. We then perform inpainting again on top of
“Forgery 1” according to another mask via EC [2], and
generate the “Forgery 2”. The two-round inpainting process
is shown in Fig. 11 (a).

We now examine the inpainting detection performance of
IID-Net and the competitors (MT-Net [21], LDI [20] and
HP-FCN [10]) by using “Forgery 1” and “Forgery 2” as
inputs, respectively. The detection results of these methods are
demonstrated in Fig. 11 (b)-(c). As can be observed, LDI fails
completely in both “Forgery 1” and “Forgery 2”. For MT-Net,
it can only detect one of these inpainted regions at certain

Fig. 11. Example of multiple inpainting manipulations. (a) Generation of
Multiple Inpainting; (b) Detection results when “Forgery 1” is used as input;
and (c) Detection results when “Forgery 2” is used as input.

Fig. 12. Detection results of a fully DL-based synthesis. (a) The input SIFT
features. (b) The image synthesized from (a). (c)-(f) The detection results of
LDI [20], MT-Net [21], HP-FCN [10] and our IID-Net by using (b) as input.
(A border is added for better viewing.).

accuracy, while missing the other one. This phenomenon is
consistent with the observation in [21]. One possibility is
that the addition of the second type of inpainting changes
the distribution of anomalous features, thereby affecting the
discriminative capability of MT-Net. HP-FCN can detect both
rounds of inpainting manipulations, but with severe detection
errors. In contrast, our proposed IID-Net gives a much more
accurate detection result not only in a single inpainting case,
but also in multiple inpainting cases. We also have tested some
other examples with different inpainting methods and more
original images; similar conclusions can be drawn.

Another challenging case is that the whole image is com-
pletely regenerated by a DL-based network, i.e., the whole
image is inpainted. For instance, a recent work [73] showed
that an image can be reconstructed from Scale Invariant
Feature Transform (SIFT) descriptors. Since the synthesis
is totally generated by DL-based networks, it can also be
regarded as a “global inpainting”, i.e., the ground-truth should
be fully positive (white). We demonstrate the inpainting
detection results of different methods in Fig. 12. It can be
noticed that MT-Net can hardly locate the inpainted regions,
mainly because its working principle relies on finding the
anomalous features relative to the dominating ones. However,
such relative dominance does not hold when the synthesis is
completely composed of “anomalous” features. Fortunately,
this limitation does not exist in our model, and the IID-Net
gives almost perfect detection result even under this challeng-
ing case, as shown in Fig. 12 (f). The results of LDI and
HP-FCN are also presented for comparison purposes.

Furthermore, we also present the localization results
in Fig. 13 when pristine images without inpainting are
inputted. In these cases, LDI and MT-Net generate relatively
poor results, while HP-FCN and IID-Net can make predictions
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Fig. 13. Detection results of pristine images by thresholding at 0.1 for better
visualization of the false alarm ratio.

almost perfectly. Here we use a lowered threshold (0.1) to
binarize the results for better visualizations of the differences
among competing methods, in terms of false alarm ratio.

V. CONCLUSION

In this paper, we propose the IID-Net, a novel DL-based
forensic model for the detection of various image inpainting
manipulations. The proposed model is designed with the assis-
tance of the NAS algorithm and the embedded attention mod-
ules to optimize the latent high-level features. Experimental
results are provided to not only demonstrate the superiority of
our model against state-of-the-art competitors, but also verify
that common artifacts are shared across diverse DL-based
and traditional inpainting methods. This allows the forensic
approaches to generalize well from one inpainting method to
unseen ones without extensive retraining.
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