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a b s t r a c t 

Density peaks clustering (DPC) algorithm published in the US journal Science in 2014 is a novel clustering 

algorithm based on density. It needs neither iterative process nor more parameters. However, original 

algorithm only has taken into account the global structure of data, which leads to missing many clusters. 

In addition, DPC does not perform well when data sets have relatively high dimension. Especially, DPC 

generates wrong number of clusters of real-world data sets. In order to overcome the first problem, we 

propose a density peaks clustering based on k nearest neighbors (DPC-KNN) which introduces the idea of 

k nearest neighbors (KNN) into DPC and has another option for the local density computation. In order 

to overcome the second problem, we introduce principal component analysis (PCA) into the model of 

DPC-KNN and further bring forward a method based on PCA (DPC-KNN-PCA), which preprocesses high- 

dimensional data. By experiments on synthetic data sets, we demonstrate the feasibility of our algorithms. 

By experiments on real-world data sets, we compared this algorithm with k-means algorithm and spectral 

clustering (SC) algorithm in accuracy. Experimental results show that our algorithms are feasible and 

effective. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Clustering, used mostly as an unsupervised learning method, is

 major technique for data mining. The main aim of cluster anal-

sis is to divide a given population into groups or clusters with

ommon characteristics, since similar objects are grouped together,

hile dissimilar objects belong to different clusters. Clustering is

seful in exploratory pattern-analysis, grouping, decision-making,

nd machine-learning situations, including data mining, document

etrieval, image segmentation, and pattern classification [1] . Clus-

ering methods are generally divided into five groups: hierarchical

lustering, partitioning clustering, density-based clustering, grid-

ased clustering and model-based clustering [2] . Each method has

ts own strengths and weaknesses. 

Density-based clustering [3–7] is represented by DBSCAN [3] .

n density-based clustering, clusters are defined as areas of higher

ensity than the remainder of the data set. Density-based clusters

an have an arbitrary shape in the feature space. In addition, DB-

CAN does not require one to specify the number of clusters in

he data a priori. However, it is very sensible to the user-defined
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arameter values, often producing very different clustering results

n the data set even for slightly different parameter settings [2] . 

Like DBSCAN and the mean-shift method [8] , density peaks

lustering (DPC) algorithm [9] proposed by Rodriguez and Laio is

ble to detect non-spherical clusters and does not require one to

pecify the number of clusters. This method is robust with re-

pect to the choice of d c as the only parameter. DPC is based on

he idea that cluster centers are characterized by a higher density

han their neighbors and by a relatively large distance from points

ith higher densities. Several researches [10–15] have been going

n around this method. 

But DPC still has some defects. The local structure of data has

ot been taken into account in DPC when it calculates the local

ensity. For example, DPC does not perform well when clusters

ave different densities. Having clusters of different densities is

ery common in data sets. The local density of DPC will lead to

issing many clusters. Fig. 1 presents that clusters cannot be all

etected with the local density of DPC. If p is small, two clusters

n the lower-left corner are detected as a single cluster. However,

f p is high, two clusters near the bottom are detected as a single

luster. In this case, DPC is not able to find clusters. 

In order to overcome this problem, we propose a novel DPC

ased on k nearest neighbors (DPC-KNN). The proposed method

akes use of the ideas of the k nearest neighbors for the local

ensity computation. 

http://dx.doi.org/10.1016/j.knosys.2016.02.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.02.001&domain=pdf
mailto:dingsf@cumt.edu.cn
http://dx.doi.org/10.1016/j.knosys.2016.02.001
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Fig. 1. DPC on these clusters of different densities. 
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In addition, it does a poor job of finding the clusters of high-

dimensional data. It may generate wrong number of clusters of

real-world data sets. This is because many of the dimensions in

high dimensional data are often irrelevant. These irrelevant dimen-

sions can confuse DPC by hiding clusters in noisy data. Another

reason is its overwhelming dependence on the distances between

points. Two main quantities of DPC are both relevant to the dis-

tances. And for this reason, the problem, “the curse of dimension-

ality”, is exacerbated. As the number of dimensions in a dataset in-

creases, distance measures become increasingly meaningless [16] .

Additional dimensions spread out the points until, in very high di-

mensions, they are almost equidistant from each other. More spe-

cific details are shown in Section 4 . On the basis of the former,

we further bring forward a method based on principal component

analysis (DPC-KNN-PCA). 

We test our algorithms on synthetic data sets to demonstrate

their feasibility. In order to assess the performance of proposed al-

gorithms, we compare proposed algorithms with other algorithms

on some UCI data sets. Our algorithms have achieved satisfactory

results in most data sets. The rest of this paper is organized as fol-

lows. In Section 2 , we describe the principle of the DPC method,

and introduce the k nearest neighbors and principal component

analysis. In Section 3 , we make a detailed description of DPC-KNN

and DPC-KNN-PCA. In Section 4 , we present experimental results

in synthetic data sets and UCI data sets, then we analyze the per-

formance of proposed algorithms. Finally, some conclusions and

the intending work are given in the last section. 

2. Related works 

The proposed DPC-KNN is based on DPC and KNN. The pro-

posed DPC-KNN-PCA is based on former theories and PCA. This

section provides brief reviews of DPC, KNN, and PCA. 

2.1. Density peaks clustering 

Rodriguez and Laio proposed an algorithm published in the US

journal Science. Its idea is that cluster centers are characterized by

a higher density than their neighbors and by a relatively large dis-

tance from points with higher densities [9] . This method utilizes

two important quantities: One is the local density ρ i of each point

i , and the other is its distance δi from points of higher density. The

two quantities correspond to two assumptions with respect to the

cluster centers. One is that the cluster centers are surrounded by

neighbors with a lower local density. The other is that they have

relatively larger distance to the points of higher density. In the fol-

lowing, we will describe the computation of ρ i and δi in much

more detail. 

Assume that the data set is X N×M 

= [ x 1 , x 2 , . . . , x N ] 
T , where x i =

[ x 1 i , x 2 i , x Mi ] is the vector with M attributes and N is the number of

points. The distance matrix of the data set needs to be computed

first. Let d( x i , x j ) denote the Euclidean distance between the point
 i and the point x j , as follows: 

 

(
x i , x j 

)
= ‖ x i − x j 2 ‖ (1)

The local density of a point x i , denoted by ρ i , is defined as: 

ρi = 

∑ 

j 

χ
(
d 

(
x i , x j 

)
− d c 

)

( x ) = 

{
1 , x < 0 

0 , x ≥ 0 

(2)

here d c is a cutoff distance. ρ i is defined as the number of points

hat are adjacent to point x i . There is another local density compu-

ation in the code presented by Rodriguez and Laio. If the former

s called a hard threshold, the latter will be called a soft threshold.

pecifically, ρ i is defined as a Gaussian kernel function, as follows:

i = 

∑ 

j 

exp 

( 

−
d 

(
x i , x j 

)2 

d c 
2 

) 

(3)

here d c is an adjustable parameter, controlling the weight degra-

ation rate. 

d c is the only variable in Formulas ( 2 ) and ( 3 ). The process for

electing d c is actually that for selecting the average number of

eighbors of all points in data set. In the code, d c is define as: 

 c = d N d × p 
100 

(4)

here N d = ( N 
2 
) and d N d × p 

100 
∈ D = [ d 1 , d 1 , . . . , d N d ] . D is a set of

ll the distances between every two points in data set, which are

orted in ascending order. N denotes the number of points in data

et. N d × p 
100 is the subscript of d N d × p 

100 
, where [ · ] is the ceiling

unction and p is a percentage. 

The computation of δi is quite simple. The minimum distance

etween the point of x i and any other points with higher density,

enoted by δi , is defined as: 

i = 

⎧ ⎨ 

⎩ 

min 

j: ρi > ρ j 

( d( x i , x j ) ) , i f ∃ j s.t. ρi > ρ j 

max 
j 

( d( x i , x j ) ) , otherwise 
(5)

Only those points with relative high ρ i and high δi are consid-

red as cluster centers. The points with high ρ i and δi value are

lso called as peaks that have higher densities than other points. A

oint is assigned to the same cluster as its nearest neighbor peak. 

After cluster centers have been found, DPC assigns each remain-

ng points to the same cluster as its nearest neighbors with higher

ensity. A representation named as decision graph is introduced to

elp one to make a decision. This representation is the plot of δi 

s a function of ρ i for each point. 

The following algorithm is a summary of DPC. 
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Algorithm 1. DPC algorithm. 

Inputs: 

The samples X ∈ R N×M 

The parameter d c 
Outputs: 

The label vector of cluster index: y ∈ R N×1 

Method: 

Step 1: Calculate distance matrix according to Formula ( 1 ) 

Step 2: Calculate ρ i for point i according to Formula ( 2 ) or ( 3 ) 

Step 3: Calculate δi for point i according to Formula ( 5 ) 

Step 4: Plot decision graph and select cluster centers 

Step 5: Assign each remaining point to the nearest cluster center 

Step 6: Return y 
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.2. k Nearest neighbors 

k Nearest neighbors (KNN) has already been exploited for clas-

ification [17–21] . This approach has been shown to be a powerful

echnique for density estimation [22] , clustering [23–25] and other

elds. As the name implies, the goal of this approach is to find the

-nearest neighbors of a sample among N samples. In general, the

istances between points are achieved by calculating the Euclidean

istance. 

To compute the local density preferably, we use an idea based

n k nearest neighbors (KNN). 

We always assume that we are given N data points X =
 x 1 , x 2 , . . . , x N ] 

T which have been drawn in M dimensional space.

s distance function between points we use the Euclidean distance,

hich is denoted by d( ·, ·). It is required to compute the k near-

st neighbors of a sample x i among { x 1 , x 2 , . . . , x i −1 , x i +1 , . . . , x N } .
orting these distances in ascending order is to find the first K

istances. The k th distance corresponds to the k th nearest neigh-

or. By kNN( x i ) we denote the set of the k nearest neighbors of x i 
mong { x 1 , x 2 , . . . , x i −1 , x i +1 , . . . , x N } . More specifics of the idea are

iscussed in Section 3 . 

The nearest neighbor step is simple to implement, though it

cales in the worst case as O( N 

2 ), if performed without any op-

imizations. Some efficient methods such as K-D tree [26] or ball

rees [27] can be used to compute the neighbors in O( N log N ) time.

.3. Principal components analysis 

Principal components analysis (PCA) is a dimensionality reduc-

ion algorithm that can be used to significantly speed up unsuper-

ised feature learning algorithm. The basic idea of PCA is to project

he original data onto a lower-dimensional subspace, which high-

ights the principal directions of variation of the data. 

The following steps describe this algorithm procedure. 

(1) Make each of the features have the same mean (zero) and

variance. 

(2) Calculate the covariance matrix �. 

(3) Calculate the eigenvectors u i and the eigenvalues λi of �. 

(4) Sort these eigenvalues in decreasing order and stack the

eigenvectors u i corresponding to the eigenvalue λi in

columns to form the matrix U . 

. Density peaks clustering based on KNN and density peaks 

lustering based on KNN and PCA 

There are still some defects in DPC. To solve these problems, we

ropose the following solutions. 
.1. Density peaks clustering based on k nearest neighbors 

Firstly, the local structure of data is not assessed by the local

ensity in DPC. For this, we propose a novel DPC based on k near-

st neighbors (DPC-KNN). 

A shortcoming of the local density is that it is not sensitive to

he local geometric of the data. Especially, when there is a great

ifference between the clusters in the density, there is a great dif-

erence between cluster centers on the local density. If d c is so low

hat the distances between cluster centers are distinguished on de-

ision graph, it is hard to select cluster centers. In our work, we

ntroduce the idea of KNN into the calculation of the local density.

Let x i ∈ X , d( ·, ·) the Euclidean distance function, and the

N k ( x i ) be the k th nearest point to x i according to d , the k-nearest

eighbors (kNN( · )) of x i is defined as: 

NN ( x i ) = 

{
j ∈ X | d 

(
x i , x j 

)
≤ d ( x i , N N k ( x i ) ) 

}
(6) 

We can use kNN( x i ) to calculate the local density. This new lo-

al density is calculating the mean distance to k nearest neighbors,

s follows: 

i = exp 

( 

−
( 

1 

k 

∑ 

x j ∈ kNN ( x i ) 

d 

(
x i , x j 

)2 

) ) 

(7) 

here k is computed as a percentage ( p ) of the number of points

 , so k = p × N. Because a higher value of the local density means

 higher density, so Formula ( 7 ) is a Gaussian kernel function as

n inverse measure of the distance. 

Then we can adopt the idea of KNN to the local density in DPC.

he following algorithm is a summary of the proposed DPC-KNN. 

Algorithm 2. DPC-KNN algorithm. 

Inputs: 

The samples X ∈ R N×M 

The parameter p 

Outputs: 

The label vector of cluster index: y ∈ R N×1 

Method: 

Step 1: Calculate distance matrix according to Formula ( 1 ) 

Step 2: Calculate ρ i for point i according to Formula ( 7 ) 

Step 3: Calculate δi for point i according to Formula ( 5 ) 

Step 4: Plot decision graph and select cluster centers 

Step 5: Assign each remaining point to the nearest cluster center 

Step 6: Return y 

Complexity Analysis: Suppose N is the total number of points

n data set. The complexity in calculating the similarity matrix is

( N 

2 ). DPC-KNN also needs O( N 

2 ) to compute the local density.

n addition, we cost O( N log N ) in the sorting process with quick

ort. For the progress to determine the cluster centers, we take

o account of the time. As the complexity in assignment proce-

ure is O( N ), the total time complexity of our DPC-KNN method is

( N 

2 ) + O( N 

2 ) + O( N log N ) + O(N) + O(N) ∼ O( N 

2 ) . 

.2. Density peaks clustering based on k nearest neighbors and 

rincipal component analysis 

In addition, DPC does not perform well when data has relatively

igh dimension. Especially, in real-world data sets, DPC generates

rong number of clusters of real-world data sets. On the basis of

PC-KNN, we further bring forward a method based on principal

omponent analysis (DPC-KNN-PCA). 



138 M. Du et al. / Knowledge-Based Systems 99 (2016) 135–145 

Fig. 2. Visualization of two-dimensional data sets. 
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Firstly, we make each of the features have the same mean

(zero). Then, compute the matrix � as follows: 

� = 

1 

N 

N ∑ 

i =1 

x i x 
T 
i (8)

If x has zero mean, then � is exactly the covariance matrix of x .

We can compute the eigenvectors of �, and stack the eigenvectors
n columns to form the matrix U : 

 = 

[ | | | | 
u 1 u 2 · · · u M 

| | | | 

] 

(9)

here u 1 is the principal eigenvector (corresponding to the largest

igenvalue), u 2 is the second eigenvector, and so on. Also, let

, λ , . . . · · · , λ be the corresponding eigenvalues. 
1 1 M 
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Fig. 2. (Continued). 
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We can represent x in the ( u 1 , u 1 , . . . · · · , u M 

) -basis by

omputing 

 rot = U 

T x = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

u 

T 
1 x 

u 

T 
2 x 

. . . 

u 

T 
M 

x 

⎤ 

⎥ ⎥ ⎥ ⎦ 

(10) 

The subscript "rot" comes from the observation that this cor-

esponds to a reflection of the original data. We can compute

 

(i ) 
rot = U 

T x (i ) for every point i . If we want to reduce this data to

ne dimension (the principal direction of variation of the data), we

an set 

˜  ( i ) = x ( 
i ) 

rot, 1 
= u 

T 
1 x 

( i ) ∈ R (11)

If x in R 

M and we want to reduce it to a k dimensional repre-

entation ˜ x ∈ R 

k (where k < M ), we would take the first k compo-

ents of x rot , which correspond to the top k directions of variation.

n other words, our definition of ˜ x can also be arrived at by using

n approximation to x rot where all but the first k components are

ero, as follows: 

˜  = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

x rot, 1 

. . . 

x rot,k 

0 

. . . 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

≈

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

x rot, 1 

. . . 
x rot,k 

x rot,k +1 

. . . 
x rot,M 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= x rot (12) 

The reason that it drops the later components of x rot is that

he first few components are considerably larger than the later

omponents. 

To decide how to set k , we will usually look at the percentage of

ariance retained for different values of k . Generally, let λ , λ , ���,
1 1 
M 

be the eigenvalues of � (sorted in decreasing order), so that λi 

s the eigenvalue corresponding to the eigenvector u i . Then if we

etain k principal components, the percentage of variance retained

s given by: ∑ k 
i =1 λi ∑ M 

i =1 λi 

(13) 

In this paper, we pick the smallest value of k that satisfies ∑ k 
i =1 λi ∑ M 

i =1 λi 

≥ 0 . 99 (14) 

The following algorithm is a summary of the proposed DPC-

NN-PCA. 

Algorithm 3. DPC-KNN-PCA algorithm. 

Inputs: 

The samples X ∈ R N×M 

The parameter p 

Outputs: 

The label vector of cluster index: y ∈ R N×1 

Method: 

Step 1: Make all of the features have the same mean (zero) and variance 

Step 2: Compute the covariance matrix � according to Formula ( 8 ) 

Step 3: Compute the eigenvectors u i and the eigenvalues λi of �

Step 4: Reduce the data and keep 99 % principal component to Formula ( 14 ) 

Step 5: Calculate distance matrix according to Formula ( 1 ) 

Step 6: Calculate ρ i for point i according to Formula ( 7 ) 

Step 7: Calculate δi for point i according to Formula ( 5 ) 

Step 8: Plot decision graph and select cluster centers 

Step 9: Assign each remaining point to the nearest cluster center 

Step 10: Return y 

Complexity Analysis: Suppose N is the total number of points in

ata set and M is the number of features of each point. Covariance

atrix computation is O( M 

2 N ). Its eigenvalues decomposition is.

o, O( M 

3 ) the complexity of PCA is O( M 

3 + M 

2 N ) . The total time

omplexity of our DPC-KNN-PCA method is O( M 

3 + M 

2 N + N 

2 ) . 
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Fig. 3. DPC-KNN-PCA on R15 set with different values of p. 
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4. Experiments and results 

In this section, we will test the performance of DPC-KNN-PCA

through two types of the experiments. By experiments on syn-

thetic data sets, we demonstrate the feasibility of the algorithm.

By experiments on real-world data sets, we compared this algo-

rithm with k-means algorithm, spectral clustering (SC) algorithm

in accuracy. 
We do experiments in a work station with a core i7 DMI2-Intel

.6 GHz processor and 18 GB RAM running MATLAB 2012B. We run

-means algorithm, SC algorithm, 10 times in real-world data sets.

his paper measures the similarity between data points with the

amous Euclidean distance, which is used widely to measure the

imilarity of spatial data, as shown Formula ( 1 ). In DPC-KNN and

PC-KNN-PCA, we select the parameter p from [0.1% 0.2% 0.5% 1%

% 6%]. In DPC, the parameter d c is also selected from [0.1% 0.2%
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Fig. 4. DPC-KNN-PCA on Aggregation and Flame sets. 
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A

.5% 1% 2% 6%]. The kernel of spectral clustering (SC) algorithm is

he Gaussian kernel. In SC, we select the parameter δ from [0.5 1

 3 4]. 

.1. Experiments on synthetic data sets 

We test the performance of our algorithms on synthetic data

ets. The synthetic data sets are two dimensional, which makes

hings easy from the visualization point of view. Because the

erformances of DPC-KNN and DPC-KNN-PCA are similar in 2-

imensional data sets, we only test the performance of DPC-KNN-

CA. 

.1.1. Synthetic data sets 

Our algorithm is tested by 11 data sets whose geometric shapes

re shown in Fig. 2 . The first data set, R15 [28] is generated as 15

imilar 2-D Gaussian distributions that are positioned in rings. The

econd data set, aggregation [29] consists of the seven perceptually

istinct groups of points where there are non-Gaussian clusters.

he third data set, Flame [30] , is of different size and shape. The

ourth data set, D, is of clusters of different densities. S1, S2, S3 and

4 [31] are four 2-D data sets with varying complexity in terms

f spatial data distributions: i.e., in S1 the overlap is the small-

st, whereas in S4 the overlap is the greatest. A1, A2 and A3 [32]

re two-dimensional sets with varying number of circular clusters

 M = 20, 35, 50). We demonstrate the power of these algorithms

n these test cases. 

.1.2. The evaluation of clustering results in synthetic data sets 

There are 15 clusters, 600 points in R15. In this case, our ap-

roaches are robust respect to parameter p . Fig. 3 presents a lot of

lusters found by our algorithms with different p and selections of

luster centers. As shown, DPC-KNN-PCA gets perfect results, ex-

ept when p = 0.5%. 

There are 2 clusters, 240 points in Aggregation set and are 7

lusters, 788 points in Flame set. The two data sets consist of some
lusters that are of different size and shape. D set has 2 clusters

nd 97 points. Its clusters are of different densities. Clustering re-

ults proposed by DPC-KNN-PCA have been given in Fig. 4 . 

The data sets S1 to S4 are two-dimensional sets with varying

omplexity in terms of spatial data distributions. The data sets

ave 50 0 0 points around 15 clusters with a varying degree of over-

ap. As shown in Fig. 5 , the performance of DPC-KNN-PCA is per-

ect for data sets with varying complexity. 

A1, A2 and A3 sets are large data sets with varying number

f clusters. A1 has 30 0 0 points around 20 clusters. A2 has 5250

oints around 35 clusters. There are 7500 points and 50 clusters

n A3. We demonstrate the robustness of the DPC-KNN-PCA for

he quantity, as shown in Fig. 6. 

As these experiments illustrate our algorithms are very effec-

ive in finding clusters of arbitrary shape, density, distribution and

umber. 

.2. Experiments on real-world data sets 

The performances of our algorithms are compared with classical

ethods (k-means algorithm and spectral clustering algorithm). 

.2.1. Real-world data sets 

The data sets used in the experiments are all from the UCI Ma-

hine Learning Repository, which include Iris, LED digits, Seeds,

eart, Pen-based digits, Waveform, Sonar. The details of those data

ets are given in Table 1. 

.2.2. Quality of the clustering results 

This paper uses clustering accuracy (ACC) [33] to measure the

uality of the clustering results. For N distinct samples x i ∈ R 

j , y i 
nd c i are the inherent category label and the predicted cluster

abel of x i , the calculation formula of ACC is 

CC = 

N ∑ 

i =1 

δ( y i , map ( c i ) ) /N (15) 



142 M. Du et al. / Knowledge-Based Systems 99 (2016) 135–145 

Fig. 5. DPC-KNN-PCA on the S1, S2, S3, and S4 sets. 
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A  
where map ( · ) maps each cluster label to a category label by

the Hungarian algorithm [34] and this mapping is optimal, let

δ(y i , c i ) equal to 1 if y i = c i or equals to 0 otherwise. The higher

the values of the ACC are, the better the clustering performance

will be. 
The comparison of these algorithms is shown in Table 2 . In

able 2 , the symbol – means that the algorithm cannot work in

he data set. 

There are less than ten features in the first three data sets.

nd the last two data sets have more than 10 features. As shown
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Fig. 6. DPC-KNN-PCA on the A1, A2, and A3 sets. 

Table 1 

The details of UCI data sets. 

Data sets Cluster Dimension N 

Iris 3 4 150 

LED digits 10 7 500 

Seeds 3 7 210 

Heart 2 13 270 

Pen-based digits 10 16 109,962 

Waveform 3 21 50 0 0 

Sonar 2 60 208 

i  

s  

h  

d  

t  

D  

g

 

K  

t  

p  

b  

s  

n  

m  

b  

d  

fi  

e  

t  

f  

u  

D  
n Table 2 , DPC-KNN outperforms others in low-dimensional data

ets such as Iris, LED digits and Seeds. However, DPC-KNN-PCA

as a better performance compared to DPC-KNN in relatively high-

imensional data sets. To be specific, the higher the features of

he data set are, the greater advantage DPC-KNN-PCA has over
Table 2 

The performance comparison of proposed algorithms. 

Data sets Accuracy DPC DPC-KNN D

Iris Mean 0.94 0.96 0

Parameter d c = 0 . 1% p = 1% p

LED digits Mean – 0.7460 0

Parameter p = 6% p

Seeds Mean 0.8952 0.9143 0

Parameter d c = 1% p = 2% p

Heart Mean – 0.8111 0

Parameter p = 1% p

Pen-based digits Mean – 0.7618 0

Parameter p = 1% p

Waveform Mean 0.5676 0.5840 0

Parameter d c = 0 . 5% p = 0.2% p

Sonar Mean – – 0

Parameter p
PC-KNN. It is obvious that DPC-KNN-PCA algorithm has achieved

ratifying results in most data sets. 

Then, the reason that produced above results is discussed. DPC-

NN, without missing any information of features, performed bet-

er than DPC-KNN-PCA in low-dimensional data set. Due to the

henomenon of the so called curse of dimensionality, the similarity

etween samples becomes meaningless in high dimensional data

paces. Although similarity between high dimensional samples is

ot meaningful, similarity according to subsets of attributes is still

eaningful. PCA not only reduces the dimensionality of the data,

ut also maintains as much information as possible. When some

ata sets have relatively high dimensions, DPC does a poor job of

nding the clusters, which we need to pay extra attention to. For

xample, Sonar data set has relatively high dimensions compared

o the number of samples. Fig. 7 shows only one cluster center

ound by DPC with different d c on decision graph. In this case, it is

nacceptable that we were incapable of making the right choices.

PC-KNN-PCA has a favorable performance compared to the
PC-KNN-PCA SC k-means 

.88 0.8867 ± 0 0.8560 ± 0.097 

 = 4% δ = 0 . 5 

.6700 0.6360 ± 0.0552 0.5208 ± 0.0713 

 = 6% δ = 0 . 5 

.9143 0.9048 ± 0 0.8905 ± 0 

 = 2% δ = 1 

.8259 0.7963 ± 0 0.7166 ± 0.0640 

 = 6% δ = 4 

.7623 0.7177 ± 0.0276 0.7004 ± 0.0466 

 = 0.2% δ = 3 

.6452 0.5054 ± 0 0.5012 ± 0 

 = 0.1% δ = 0 . 5 

.6442 0.5433 ± 0 0.5433 ± 0.0124 

 = 1% δ = 2 
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Fig. 7. DPC on Sonar set with different values of d c . 

Fig. 8. DPC-KNN-PCA on Sonar set. 
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original algorithm, as shown Fig. 8 . In consequence, DPC-KNN-PCA

outperforms DPC-KNN in high-dimensional data sets. 

5. Conclusions 

DPC-KNN has another option based on k nearest neighbors

(KNN) for the local density computation. On the basis of DPC-

KNN, a method based on principal component analysis (DPC-KNN-

PCA) is presented to improve the performance of the former on

real-world data sets. In this paper, presented algorithms show

the power in some synthetic data sets. Besides the good feasibil-

ity, proposed algorithms get better clustering performances com-

pared to classical methods (k-means algorithm and spectral clus-

tering algorithm) and DPC in UCI data sets. In low-dimensional

data sets, DPC-KNN outperforms others. And DPC-KNN-PCA has

achieved gratifying results in relatively high-dimensional data sets.

However, the proposed algorithm does not perform well when

there is a collection of points forming vertical streaks in data set.
uture research is to improve the performance of DPC-KNN-PCA

lgorithm on manifold data set. 
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